| 企业等级: | 商盟会员 |
| 经营模式: | 商业服务 |
| 所在地区: | 广东 广州 |
| 联系卖家: | 陈果 先生 |
| 手机号码: | 18028053627 |
| 公司官网: | gzzsjc.tz1288.com |
| 公司地址: | 广州市南沙区黄阁镇市南公路黄阁段230号(自编八栋)211房(仅限办公) |






以下是TGA测试中食品热失重率的计算方法和案例演示,清晰易懂:一、热失重率计算公式:热失重率(WeightLossPercentage,WL%)是指在特定温度区间(T1到T2)内,样品损失的质量占初始质量的百分比。计算公式为:WL%=[(W?-W?)/W?]×100%其中:*WL%:在温度T时(或温度区间T1-T2内)的热失重百分比。*W?:样品在测试开始(室温或设定起始温度,通常已扣除空坩埚重)的初始质量(单位:mg或g)。*W?:样品在目标温度T(或温度区间T1-T2的终点T2)时的剩余质量(单位:mg或g,同样扣除坩埚重)。关键点:*分母始终是初始质量W?:这是计算失重率的基础。*计算区间失重:要计算某个温度范围(如250°C到500°C)的失重率,就是用该区间起点温度(250°C)的质量减去终点温度(500°C)的质量,再除以初始质量W?。公式演变为:WL%_{T1-T2}=[(W_{T1}-W_{T2})/W?]×100%*区分失重率与剩余率:剩余质量百分比=(W?/W?)×100%;失重率=100%-剩余率。二、案例演示:薯片成分模拟物分析*样品:模拟薯片(主要含淀粉、少量蔗糖、水分)。*TGA条件:N?气氛,室温升温至600°C,升温速率10°C/min。*关键质量数据(假设值):*W?(初始质量,30°C):10.00mg*W?(100°C质量):9.20mg(主要失水)*W?(250°C质量):9.15mg(少量挥发性油脂/低分子量物质)*W?(500°C质量):1.50mg(有机物大部分分解)*W?(600°C质量):1.50mg(残留灰分/碳)计算不同温度区间的热失重率:1.总失重率(30°C-600°C):WL%_{total}=[(W?-W?)/W?]×100%=[(10.00-1.50)/10.00]×100%=(8.50/10.00)×100%=85.0%2.水分蒸发失重率(估算区间:30°C-100°C):WL%_{水分}≈[(W?-W?)/W?]×100%=[(10.00-9.20)/10.00]×100%=(0.80/10.00)×100%=8.0%*(说明:此区间失重主要归因于自由水和部分结合水)*3.挥发性有机物/油脂失重(估算区间:100°C-250°C):WL%_{挥发性}≈[(W?-W?)/W?]×100%=[(9.20-9.15)/10.00]×100%=(0.05/10.00)×100%=0.5%*(说明:此区间失重较小,可能来自少量油脂或热不稳定小分子)*4.主要有机物分解失重(关键区间:250°C-500°C):WL%_{分解}=[(W?-W?)/W?]×100%=[(9.15-1.50)/10.00]×100%=(7.65/10.00)×100%=76.5%*(说明:此区间是淀粉、蔗糖等碳水化合物发生剧烈热解、焦化并释放CO、CO?等小分子气体的主要阶段,失重)*5.残留物(灰分/碳)比例(600°C):剩余率=(W?/W?)×100%=(1.50/10.00)×100%=15.0%*(说明:600°C后质量基本不变,此残留物代表样品中的无机矿物质(灰分)和高温下未完全分解的碳渣)*解读:通过TGA曲线和上述计算,可清晰量化该模拟薯片在不同热分解阶段的失重情况:约含8%水分,在250°C-500°C高温区间发生主要成分(淀粉、糖)的热分解,失重高达76.5%,终残留约15%的无机灰分和碳渣。这有助于理解食品的热稳定性、主要成分分解温度范围及灰分含量。失重率的在于揭示样品在受热过程中特定组分(如水分、有机物)的损失程度及其对应的温度区间。
TGA 测试食品油脂:怎么通过热重曲线看挥发分含量?。
在热重分析(TGA)中分析食品油脂的挥发分含量,主要是通过解读热重(TG)曲线及其导数(DTG)曲线上的失重台阶和特征峰来实现的。以下是关键步骤和解读方法:1.理解挥发分组成:*食品油脂的“挥发分”在TGA语境下通常指在加热过程中,在油脂主要热分解发生之前或同时挥发出的相对低分子量、低沸点的组分。*这主要包括:*吸附水/游离水:在较低温度(通常*低沸点溶剂/添加剂:如残留的萃取溶剂、香精香料中的挥发性成分。*易分解小分子:如某些游离脂肪酸、短链甘油酯、氧化产物(醛、酮等)在较低温度下分解或挥发。*油脂本身的热分解初产物:在主要分解温度区间内产生的挥发性裂解产物(如脂肪酸、等)。2.识别TG曲线上的失重台阶:*观察整个温度范围(通常室温至600-800°C):TG曲线记录了样品质量随温度(或时间)的变化。*定位主要失重区间:*低温失重区(~50-150°C):这个台阶主要对应水分和极低沸点挥发物的损失。该台阶结束时的质量损失百分比可以近似视为水分含量。挥发分的一部分在此体现。*主要分解失重区(~200-500°C):这是油脂主要的热分解区间,对应甘油三酯分子链的断裂,产生大量挥发性裂解产物(脂肪酸、醛、酮、烃类等)。这个宽泛的失重台阶是挥发分的主体。在惰性气氛(如N?)下,此阶段失重可达95%以上(残留焦炭),在氧化气氛(如空气)下,后续会燃烧失重(残留灰分)。*(可选)氧化/燃烧失重区(>~400°C,通常在空气气氛下):如果实验在空气中进行,在主要热分解之后会有一个陡峭的失重台阶,示差扫描量热分析公司,对应残留焦炭的燃烧。3.利用DTG曲线定位:*DTG曲线(质量变化率dm/dt或dm/dTvs.T)是TG曲线的导数,能更清晰地显示质量损失的速率和峰值温度。*识别DTG峰:*在低温区(~100°C附近)出现的峰通常对应水分/低沸点物挥发的大速率。*在主要分解区(~300-400°C)出现的宽峰或肩峰,对应油脂热分解产生挥发分的大速率。这个峰的面积(或高度,结合TG台阶)反映了该过程挥发分的量。*多个峰的意义:如果DTG曲线在主要分解区出现多个峰(如肩峰),可能表明油脂中含有不同热稳定性的组分(如不同链长的脂肪酸、饱和/不饱和脂肪酸、氧化程度不同的组分),或者分解过程包含多个连续/并行的反应步骤。每个峰代表一个特定的挥发/分解事件。4.计算挥发分含量:*总挥发分含量:通常指从室温加热到主要分解结束温度(即在惰性气氛下达到质量平台,或氧化气氛下燃烧开始前)的总质量损失百分比。这包含了水分、低沸点物和热分解产生的所有挥发分。`总挥发分(%)≈100%-主要分解结束时的残余质量百分比`*特定挥发分(如水分):*将TG曲线上低温失重台阶结束点(如150°C)的质量损失百分比视为水分含量。*或者,通过DTG上~100°C峰的特征来界定水分挥发的温度范围,计算该温度区间的失重。*油脂分解挥发分:*从水分挥发结束点(如150°C)到主要分解结束点(如450°C或达到焦炭平台)的质量损失百分比,示差扫描量热分析价格,近似代表油脂本身分解产生的挥发分含量(不包括水分)。`油脂分解挥发分(%)≈主要分解结束点残余%-水分挥发结束点残余%`总结关键点:*TG曲线台阶:直观显示不同温度区间的累计质量损失,台阶的垂直跨度对应挥发分的含量。*DTG曲线峰值:定位质量损失速率快的温度点,峰的位置反映挥发/分解的难易程度(热稳定性),峰的面积(或与TG台阶结合)反映该步骤挥发分的相对量。*挥发分含量计算:通过确定TG曲线上关键转折点(平台起点和终点)对应的质量百分比,计算差值即可得到特定温度区间(对应特定挥发组分)或整个加热过程(总挥发分)的质量损失百分比,即挥发分含量。因此,通过仔细分析TG曲线的失重台阶位置和幅度,并结合DTG曲线的峰位置和形状,就能清晰地解读出食品油脂中不同类别挥发分(尤其是水分和油脂热分解挥发分)的含量及其挥发的温度特征。注意:实际解读时需结合具体实验条件(升温速率、气氛、样品量、坩埚类型)和油脂样品的特性(如精炼程度、氧化状态、脂肪酸组成)进行综合分析。

在食品热分析(如DSC、TGA、TMA)中,“基线漂移”是一个经常困扰实验人员的现象。它指的是在理想情况下应保持平稳(DSC、TGA)或线性(TMA)的基线信号,示差扫描量热分析多少钱一次,在实验过程中出现缓慢、持续的上漂或下漂(或两者兼有),偏离了预期的水平或线性轨迹。这种漂移会严重影响数据的准确性和可重复性,特别是对微小的热效应(如玻璃化转变、小峰)的识别和定量分析构成挑战。为什么“先查样品是否受潮”至关重要?在食品热分析中,样品吸湿(受潮)是导致基线漂移常见、直接的原因之一,尤其是在DSC和TGA中:1.水分蒸发吸热(DSC):如果样品含有吸附水或结合不紧密的水分,在升温过程中,这些水分会蒸发。蒸发是一个吸热过程,会在DSC曲线上产生一个向下的吸热漂移(基线持续下移)。这个漂移可能覆盖一个较宽的温度范围(尤其是从室温到100-150°C),与真正的热事件(如熔融、玻璃化转变)叠加,干扰判断。2.质量损失(TGA):在TGA中,水分的蒸发直接表现为质量损失。如果基线(通常是质量或质量变化率曲线)在升温初期就持续下降,且未达到预期的平台(即失重未完成),这本身就是漂移的表现,影响后续失重台阶的起始点、斜率和平台高度的判断。3.物理状态变化与热容变化:水分的存在会影响样品的物理状态(如塑化、促进无定形化)和热容。干燥过程本身伴随着样品结构和性质的变化,这些变化本身就会引起热流(DSC)或尺寸(TMA)基线的变化。4.非均匀性:样品内部或表面水分分布不均,可能导致蒸发过程不平稳,加剧基线的波动和不规则漂移。除了样品受潮,基线漂移的其他常见原因还包括:*仪器因素:*坩埚/样品池密封不良:盖子未盖紧或密封圈老化,导致挥发性成分(包括水汽)在实验过程中持续缓慢逸出(DSC、TGA下漂)或外界气体渗入(可能引起氧化反应导致上漂)。*仪器未充分预热/平衡:开机后未达到稳定的热平衡状态就开始实验。*传感器污染/老化:传感器表面积累污染物(如上次实验残留物、氧化层)或性能衰减。*吹扫气体不稳定:流速或纯度波动(如水分含量变化)影响热传导和反应环境。*炉体温度分布不均/控温精度问题:温度梯度或控温波动引起基线漂移。*实验参数:*升温速率过快:仪器热响应跟不上,导致基线失真。*样品量过大:样品内部存在显著温度梯度,热传递滞后,影响基线稳定性。*样品本身特性:*缓慢化学反应/分解:在升温过程中发生缓慢的氧化、交联、分解等反应,持续释放或吸收热量(DSC),或持续失重(TGA)。*样品在测试温度范围内发生物理松弛:如高分子材料的物理老化恢复过程,可能导致缓慢的吸热或放热(DSC)或尺寸变化(TMA)。*样品与坩埚/支架发生反应:如某些金属坩埚可能催化样品反应。如何处理基线漂移问题?1.首要排查:样品受潮!*充分干燥样品:根据样品性质选择合适的干燥方法(真空干燥、烘箱干燥、干燥器储存)和时间。确保干燥后样品在低湿度环境中快速制样和密封。*使用密封性好的样品池/坩埚:确保盖子压紧,密封圈完好。*空白实验对比:在相同条件下运行一个空坩埚(或仅含干燥惰性参比物)的实验作为基线。然后将样品+空坩埚的曲线减去这个空白基线,可以有效消除仪器本身和密封坩埚内微量水分等因素引起的漂移。这是且有效的校正方法。2.检查仪器状态:*确保仪器已充分预热和稳定。*定期清洁炉体、传感器和样品支架。*检查并更换老化或损坏的密封圈。*确保吹扫气体(如N2)纯净、干燥且流速稳定。3.优化实验参数:*适当降低升温速率。*减少样品用量,确保样品均匀平铺。4.选择合适的坩埚/支架:*确保坩埚材质与样品兼容,济源示差扫描量热分析,避免反应。*对于易挥发或易氧化样品,务必使用耐压密封坩埚。5.基线校正:*在数据处理软件中,利用空白基线进行减法运算,或使用软件提供的线性/多项式拟合基线校正功能(需谨慎使用,避免过度校正掩盖真实信号)。总结:基线漂移是食品热分析中需要高度重视的问题。当遇到漂移时,“先查样品是否受潮”是一条非常实用的经验法则。通过严格干燥样品、使用密封性好的坩埚并进行空白基线扣除,通常能有效解决大部分由水分引起的漂移问题。同时,也要系统排查仪器状态、实验参数和样品本身特性等其他可能因素,才能获得准确可靠的热分析数据。
济源示差扫描量热分析-中森检测(推荐商家)由广州中森检测技术有限公司提供。广州中森检测技术有限公司在技术合作这一领域倾注了诸多的热忱和热情,中森检测一直以客户为中心、为客户创造价值的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创辉煌。相关业务欢迎垂询,联系人:陈果。广州中森检测技术有限公司 电话:180-24042578 传真:180-28053627 联系人:陈果 18028053627
地址:广州市南沙区黄阁镇市南公路黄阁段230号(自编八栋)211房(仅限办公) 主营产品:产品检测,环境监测,食品安全检测,建筑工程质量检测,成分分析
Copyright © 2025 版权所有: 天助网 增值电信业务经营许可证:粤B2-20191121
免责声明:以上所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责。天助网对此不承担任何保证责任。
您好,欢迎莅临中森检测,欢迎咨询...