| 企业等级: | 商盟会员 |
| 经营模式: | 商业服务 |
| 所在地区: | 广东 广州 |
| 联系卖家: | 陈果 先生 |
| 手机号码: | 18028053627 |
| 公司官网: | gzzsjc.tz1288.com |
| 公司地址: | 广州市南沙区黄阁镇市南公路黄阁段230号(自编八栋)211房(仅限办公) |






原则:覆盖实际应用温度并留有余量,同时考虑添加剂特性1.了解添加剂的实际应用场景:*加工温度:这是关键的起点。添加剂将经历的温度是多少?例如:*烘焙/油炸:通常高达180°C-220°C(甚至局部更高)。*灭菌/罐装:约121°C(高压灭菌)或更高。*巴氏杀菌/干燥:通常在60°C-100°C。*常温储存:低于40°C。*目标温度范围应至少覆盖并显著超过(通常高出50°C-150°C)该添加剂在实际食品加工或储存中可能遇到的温度。这是为了评估其在或意外情况下的稳定性,并确保观察到完整的分解过程。例如,用于烘焙食品的乳化剂,测试上限至少应设为250°C-300°C。2.考虑添加剂本身的化学性质:*已知信息:查阅文献、数据库或供应商提供的技术资料,了解该添加剂大致的熔点、沸点、分解温度、氧化温度等。这为设定范围提供初步依据。*物质类别:*天然色素/剂:许多对热敏感,分解可能在100°C-250°C发生。*合成剂(如BHA,BHT,TBHQ):相对稳定,熔点和主要分解可能在150°C-300°C。*乳化剂/稳定剂:如单甘酯、蔗糖酯等,熔点和分解温度差异大,但通常在50°C-300°C有重要变化。*防腐剂:如苯甲酸钠、山梨酸钾,熔点或分解可能在200°C-400°C以上。*甜味剂:阿斯巴甜极不稳定(分解约150-200°C),而三氯蔗糖则非常稳定(分解>400°C)。*矿物质/营养强化剂:通常非常稳定,主要关注物理变化(如脱水)。*挥发性:如果添加剂易挥发(如某些香精香料),TGA测试的起始温度可能需要更低(甚至从室温或更低开始),以早期失重。3.明确测试目的和关注的热事件:*TGA:主要关注质量损失(失重台阶),对应脱水、挥发、分解。终点温度必须足够高,以确保分解反应基本完成(失重曲线趋于平缓)。对于未知物质或需要分解研究的,上限可能需要达到600°C甚至更高(需考虑仪器和坩埚限制),但食品添加剂通常500°C已足够(绝大多数有机成分已碳化或灰化)。*DSC:主要关注能量变化(吸热/放热峰),对应熔化、结晶、玻璃化转变、氧化、分解反应。需要覆盖所有预期的相变和反应温度。特别要注意氧化放热峰,这对评估加工和储存稳定性至关重要。氧化峰可能出现在远低于分解温度的范围(如150°C-300°C)。因此,即使TGA显示高温才分解,DSC也需覆盖可能发生氧化的中温区。4.考虑实验条件(气氛、升温速率):*气氛:在空气/氧气中测试能氧化行为,这对评估热氧稳定性至关重要,温度范围需覆盖预期的氧化峰(常低于惰性气氛下的分解温度)。在氮气/气下测试主要考察热分解,温度可能更高。*升温速率:升温过快(如>20°C/min)会使热事件(尤其是分解峰)向高温偏移。常用速率是5°C/min或10°C/min。设定的范围应能容纳升温速率带来的影响。推荐的合理温度范围设定策略*起始温度:通常从室温(25°C-40°C)或略低于室温开始。这可以样品中可能存在的少量水分挥发或低温相变。对于极易挥发的样品,可能需要从0°C或更低开始(需配备冷却附件)。*终止温度:*基础:不低于实际应用温度+50°C。这是安全余量。*更优实践:*TGA:设定在预期主要分解完成之后(失重曲线明显变平),且通常不超过500°C。对于大多数有机添加剂,300°C-450°C是常见范围。对于非常稳定的无机物(如某些矿物质),可能只需到600°C或800°C(观察灰分)。*DSC:必须覆盖可能的氧化区域(尤其在空气/氧气中)。即使TGA在惰性气氛下分解温度高,DSC在氧化气氛下测试上限建议至少到300°C-350°C。对于惰性气氛下的分解,示差扫描量热分析技术,可参考TGA范围。*具体例子:*用于烘焙食品的合成剂(如BHT):TGA(N?)范围建议25°C-400°C;DSC(Air)范围建议25°C-350°C(重点看氧化峰)。*天然类胡萝卜素色素:TGA/DSC(N?或Air)范围建议25°C-300°C(可能更早就分解)。*乳化剂单甘酯:TGA/DSC范围建议25°C-250°C(覆盖熔化和初始分解)。*防腐剂山梨酸钾:TGA范围建议25°C-450°C(分解温度较高)。总结设定食品添加剂热稳定性热分析的温度范围没有统一的标准,必须基于添加剂的实际应用温度、化学特性(类别、挥发性)、测试目的(TGA失重vsDSC能量变化/氧化)、实验气氛以及文献/已知信息进行综合判断。是:1.起始点:从室温或更低(如易挥发)。2.终点:*TGA:确保主要分解完成(曲线平缓),通常≤500°C。*DSC:必须覆盖潜在的氧化放热区(尤其空气/氧气下),上限常为300°C-350°C,惰性气氛可参考TGA。3.关键保障:始终显著高于实际应用温度(+50°C-150°C)。稳妥的做法是:行初步的宽范围扫描(如25°C-500°C@10°C/min),根据得到的热谱图(TGA失重曲线、DSC热流曲线)确定关键事件发生的温度区间,然后在后续更的测试中优化范围(如聚焦在特定区间使用更慢的升温速率)。同时,参考同类或相似添加剂的文献数据也是非常重要的辅助手段。
热分析测食品油脂氧化:怎么通过曲线判断氧化程度?1 个关键指标。
通过热分析技术(尤其是差示扫描量热法-DSC)评估食品油脂氧化程度时,是观察在强制氧化条件(通常是高温和恒定氧气流)下,油脂样品从稳定状态到发生剧烈氧化反应的时间点。1个关键、直接的指标是:氧化诱导期(OxidationInductionTime,OIT)。如何通过DSC曲线判断氧化程度(基于OIT):1.实验设置:将少量油脂样品密封在耐压DSC坩埚中,通入恒定流速的氧气(或空气)。仪器以恒定速率升温至一个预设的高温(如100°C,120°C,150°C等,需根据油脂类型和目的选择),然后在该温度下保持恒温。2.曲线特征:*初始阶段(基线期):在恒温初期,曲线呈现一条相对平稳或缓慢变化的基线。此阶段油脂处于相对稳定状态,发生的氧化反应非常缓慢,产生的热量很少,DSC检测不到明显的热流变化。*转折点(氧化起始点):随着剂被逐渐消耗殆尽或油脂本身的不稳定性达到临界点,油脂开始发生自催化氧化反应。这是一个剧烈的放热过程。*放热峰:在转折点之后,DSC曲线会急剧向上(放热方向)偏离基线,形成一个陡峭上升的放热峰。这个峰代表了油脂氧化反应释放的大量热量。3.关键指标-氧化诱导期(OIT):*定义:从达到设定的恒温温度点开始,到DSC曲线明显向上偏离基线(即氧化放热反应开始)的时间间隔。通常,这个偏离点是通过作切线或设定一个特定的热流变化阈值(如0.5mW/mg)来定义的。*解读:*OIT长:意味着油脂在高温高压氧化条件下抵的能力强,其初始氧化程度低,新鲜度高,或者含有较多/有效的剂。未氧化或轻度氧化的油脂OIT值通常较高。*OIT短:意味着油脂抵的能力弱,其初始氧化程度已经较高(如氢过氧化物等初级氧化产物积累较多),或者所含的天然/添加的剂已基本耗尽。深度氧化或储存时间长的油脂OIT值会显著缩短。4.实际应用:*比较不同样品的稳定性:在相同测试条件下(温度、氧气流速、样品量),直接比较OIT值大小。OIT越长,稳定性越好,氧化程度越低。*评估储存效果:对同一种油脂在不同储存时间或条件下取样测试OIT,OIT下降幅度越大,说明氧化程度进展越快。*筛选剂:在油脂中添加不同种类或浓度的剂后测试OIT,OIT延长越显著,说明该剂效果越好。总结:在DSC热分析用于评估食品油脂氧化程度的曲线上,、直观的指标是氧化诱导期(OIT)。它直接量化了油脂在加速氧化条件下保持稳定的时间。OIT值越长,表明油脂越新鲜、氧化程度越低、稳定性越好;OIT值越短,示差扫描量热分析机构,则表明油脂氧化程度越高、稳定性越差、可能已接近或进入快速氧化变质阶段。通过测量和比较OIT,可以快速、有效地评估油脂的氧化状态和货架期潜力。其他指标如氧化放热峰的峰高或面积(反映氧化速率和放热量)也可作为辅助参考,但OIT是判断初始氧化程度关键的指标。

在热重分析(TGA)中,对于食品颗粒样品,选择5mg还是10mg样品量需要根据实验目的、样品特性和仪器性能进行权衡。两者对测试结果会产生可观察到的差异,湖北示差扫描量热分析,主要体现在以下几个方面:1.热传递与质量传递效应*5mg样品:*优点:样品量小,内部热梯度相对较小,样品颗粒或层间传热更快、更均匀。这通常意味着测得的分解/失重起始温度和峰值温度更接近材料的“本征”行为。气体产物从样品内部扩散到表面的路径更短、阻力更小,减少了气体产物滞留导致的二次反应(如焦化)或对分解动力学的干扰。峰形往往更尖锐,分辨率更高,相邻失重步骤的分离度可能更好。*缺点:对于不均匀的颗粒样品(如不同大小的颗粒、成分分布不均),小样品量可能代表性不足,一次取样可能无法反映整体样品的平均性质,导致测试结果的重复性变差。如果样品中某些关键成分(如微量水分、易挥发物)含量很低,5mg样品产生的质量变化信号可能较小,接近仪器检测限,信噪比可能降低,影响低失重率测量的准确性。*10mg样品:*优点:样品量较大,对于颗粒状或不均匀样品,代表性通常更好,更能反映样品的平均组成和性质,测试结果的重复性(不同次取样间)可能更优。产生的质量变化信号更大,信噪比更高,特别有利于检测含量较低的组分(如微量水分、灰分)或微小的失重步骤。*缺点:内部热梯度增大,热量从坩埚壁传递到样品中心需要更长时间,可能导致测得的分解温度(尤其是峰值温度)滞后且偏高。气体产物扩散路径更长,阻力更大,更容易在样品内部滞留。这可能导致:*峰形变宽、拖尾:失重过程显得更缓慢。*相邻峰重叠加剧:分辨率降低,难以区分紧密相连的失重步骤。*二次反应增加:滞留的气体产物(如挥发性酸、水蒸气)可能促进水解、氧化或焦化等副反应,改变失重曲线形态和残炭量。*表观失重速率降低:扩散限制成为速率控制步骤。2.样品本身性质的影响*高反应性/高挥发性样品:对于含有大量低沸点溶剂、自由水或极易分解成分的食品(如某些含糖量极高的糖果、含乙醇提取物的样品),5mg样品更优。它能更快地释放挥发分,减少因挥发分积聚导致的样品喷溅、起泡或异常剧烈的失重,获得更接近真实动力学的数据。*高聚物/高残炭样品:对于蛋白质、淀粉、纤维素等易形成焦炭的食品成分,5mg样品通常能减少焦炭形成(因气体扩散快),测得残炭率可能略低。而10mg样品因扩散限制,焦炭形成的可能性增加,残炭率可能偏高。*热导率低的样品:食品通常热导率不高。10mg样品的热滞后现象会比5mg样品更显著。3.仪器因素*天平灵敏度:现代微量/超微量热天平灵敏度极高,5mg样品通常也能获得高质量信号。但对于非常古老或精度较低的天平,10mg提供的更大信号可能。*炉膛气体流型:优化的气流设计(如从坩埚底部向上吹扫)能部分缓解大样品的气体扩散问题,但无法完全消除热梯度。对比测试结果结论与建议1.追求分辨率与“本征”行为:若实验目标是测定分解温度(特别是起始温度)、区分紧密相连的失重步骤、研究材料本身的热分解动力学,或样品易挥发/易起泡,优先选择5mg样品量。它能提供更尖锐的峰、更好的分辨率、更接近理论值的分解温度,并减少副反应。2.追求代表性与信噪比:若样品本身不均匀(颗粒大小、成分分布),目标是获得反映批次平均性质的数据、检测微量组分(如微量水、灰分),或仪器信噪比较低,优先选择10mg样品量。它能提供更好的重复性、更高的信噪比,更适用于质量控制或成分粗略分析。3.折中与实践:*强烈建议进行对比测试:在条件允许的情况下,对同一样品同时进行5mg和10mg的测试对比是的做法。观察峰形、温度、残炭量、重复性的差异。*样品制备至关重要:无论选择5mg还是10mg,确保样品尽可能均匀是关键。对于颗粒样品,充分研磨混合是提高小样品(5mg)代表性和大样品(10mg)内部均匀性的有效手段。研磨时需注意避免热分解或水分损失。*样品铺展:将样品薄层平铺在坩埚底部,避免堆积,能显著减少热梯度和扩散限制,这对大样品(10mg)尤为重要。*参考标准/文献:查阅针对类似食品的TGA标准方法或已发表文献中常用的样品量。*实验目的导向:终选择应服务于具体的实验目的。如果目的是比较不同批次或不同配方食品的整体热稳定性差异,10mg的代表性可能更重要。如果是研究特定成分(如淀粉糊化、蛋白质变性)的温度,5mg的分辨率更佳。总结:对于食品颗粒样品,5mg和10mg样品量在TGA测试中各有优劣。5mg在分辨率、温度准确性、减少副反应方面通常更优,但可能牺牲代表性和低含量组分的信噪比。10mg在代表性、信噪比和重复性上可能更好,示差扫描量热分析指标,但可能引入热滞后、峰形展宽、分辨率下降和残炭率升高等问题。没有的值,需根据样品特性、实验目的和仪器条件权衡,并进行对比测试。对于大多数食品TGA分析,5mg(配合良好研磨和铺展)通常是平衡分辨率与实用性的推荐起点,尤其当关注分解机制时。若样品极不均匀或关注微量组分,可考虑增加到10mg。
示差扫描量热分析指标-中森检测-湖北示差扫描量热分析由广州中森检测技术有限公司提供。广州中森检测技术有限公司是从事“产品检测,环境监测,食品安全检测,建筑工程质量检测,成分分析”的企业,公司秉承“诚信经营,用心服务”的理念,为您提供更好的产品和服务。欢迎来电咨询!联系人:陈果。广州中森检测技术有限公司 电话:180-24042578 传真:180-28053627 联系人:陈果 18028053627
地址:广州市南沙区黄阁镇市南公路黄阁段230号(自编八栋)211房(仅限办公) 主营产品:产品检测,环境监测,食品安全检测,建筑工程质量检测,成分分析
Copyright © 2025 版权所有: 天助网 增值电信业务经营许可证:粤B2-20191121
免责声明:以上所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责。天助网对此不承担任何保证责任。
您好,欢迎莅临中森检测,欢迎咨询...